More on the crossing number of Kn: Monotone drawings

نویسندگان

  • Bernardo M. Ábrego
  • Oswin Aichholzer
  • Silvia Fernández-Merchant
  • Pedro Ramos
  • Gelasio Salazar
چکیده

The Harary-Hill conjecture states that the minimum number of crossings in a drawing of the complete graph Kn is Z(n) := 1 4 ⌊ n 2 ⌋ ⌊ n−1 2 ⌋ ⌊ n−2 2 ⌋ ⌊ n−3 2 ⌋ . This conjecture was recently proved for 2-page book drawings of Kn. As an extension of this technique, we prove the conjecture for monotone drawings of Kn, that is, drawings where all vertices have different x-coordinates and the edges are x-monotone curves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shellable drawings and the cylindrical crossing number of $K_n$

The Harary-Hill Conjecture states that the number of crossings in any drawing of the complete graph Kn in the plane is at least Z(n) := 1 4 ⌊ n 2 ⌋ ⌊ n−1 2 ⌋ ⌊ n−2 2 ⌋ ⌊ n−3 2 ⌋ . In this paper, we settle the Harary-Hill conjecture for shellable drawings. We say that a drawing D of Kn is s-shellable if there exist a subset S = {v1, v2, . . . , vs} of the vertices and a region R of D with the fo...

متن کامل

Crossing Numbers and Combinatorial Characterization of Monotone Drawings of $$K_n$$ K n

In 1958, Hill conjectured that the minimum number of crossings in a drawing of Kn is exactly Z(n) = 1 4 ⌊n 2 ⌋ ⌊

متن کامل

The Crossing Number of Seq-Shellable Drawings of Complete Graphs

The Harary-Hill conjecture states that for every n > 0 the complete graph on n vertices Kn, the minimum number of crossings over all its possible drawings equals H(n) := 1 4 ⌊n 2 ⌋⌊n− 1 2 ⌋⌊n− 2 2 ⌋⌊n− 3 2 ⌋ . So far, the lower bound of the conjecture could only be verified for arbitrary drawings of Kn with n ≤ 12. In recent years, progress has been made in verifying the conjecture for certain ...

متن کامل

The crossing numbers of $K_{n,n}-nK_2$, $K_{n}\times P_2$, $K_{n}\times P_3$ and $K_n\times C_4$

The crossing number of a graph G is the minimum number of pairwise intersections of edges among all drawings of G. In this paper, we study the crossing number of Kn,n − nK2, Kn × P2, Kn × P3 and Kn × C4.

متن کامل

On the Biplanar Crossing Number of Kn

The crossing number cr(G) of a graph G is the minimum number of edge crossings over all drawings of G in the Euclidean plane. The k-planar crossing number crk(G) of G is min{cr(G1) + cr(G2) + . . .+ cr(Gk)}, where the minimum is taken over all possible decompositions of G into k subgraphs G1, G2, . . . , Gk. The problem of computing the crossing number of complete graphs, cr(Kn), exactly for sm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2013